You probably remember the first big biological change, marked by the arrival of your first period.
Regardless of whether or not you received any information or support, one thing was assured – you had to figure out how to take care of your body and how to continue your daily life while dealing with very tangible, monthly evidence that you had now officially reached reproductive age.
We are all growing older every day, but many women don’t realize that medically, there is a reproductive clock that ticks alongside, but not always in sync with, their biological clock (despite the common use of ‘the biological clock’ indicating how much time a woman has left to bear children). It is this reproductive aging process that determines when you enter into the transition to menopause and finally pass menopause and settle into post-menopausal life.
In 2001, a group of experts met with the purpose of developing a system to formally define the stages of reproductive aging. This workshop, called the Stages of Reproductive Aging Workshop (STRAW) [2] was followed in 2012 by the Stages of Reproductive Aging Workshop + 10 (STRAW+10) [3] which completed the work started in STRAW. The final results from these workshops are shown in the Figure below.
Let’s walk through it and see if you can spot where you are!
Healthy menopause and a high quality of life (QOL) are rooted both in a woman’s personal health and also in her environment as shown in the figure below. Genetics play a large role in menopause, so the age your mother reached menopause is a good predictor of when you may reach it. You can’t control your genetic heritage, or some aspects of your environment, but there are many choices you can control such as getting adequate exercise and good nutrition, and increasing your resilience to stress.
Developing a trusting relationship with your healthcare provider is also important as they serve a critical role in providing information and resources for menopausal care. Unfortunately, some women avoid medical input during their menopausal transition due to a lack of trust in healthcare providers, a lack of access to health care, or personal choices. These women end up trying to manage their menopausal experiences privately and so miss out on many resources and therapies that are available.
If you would like to assess your own Quality of Life, our resources section has several tools available to you. You can also take these QOL questionnaires and provide the results to your healthcare provider for their information.
Much of the science underlying menopausal transition is not well known. However, we do know that some reproductive hormones, such as estrogen and progesterone, decline, and that follicle stimulating hormone (FSH) increases, as shown in the graph and described in the text below. [9][10][11][12] Note that the cause- and effect- interaction of declining E2 and increasing FSH in a woman’s body are not well understood at this time.
Estrogen is important because it is a master regulator of metabolism, brain health, cell division, bone strength, and many other functions in addition to reproduction.[15][16]
Estrogen is a steroid hormone (also called estradiol or E2) secreted by the ovaries and adipose tissue and its’ secretion becomes irregular as early as the Late Reproductive Stage (LRS) (Reproductive: Late Stage) of life. [13] Estrogen may make very dramatic oscillations during the menopausal transition stage, finally steeply declining to close to zero in the last year before menopause. How estrogen variability directly affects short-term symptoms like mood and hot flashes, or chronic conditions like bone thinning (osteopenia and osteoporosis), is not understood. [14]
Progesterone is a steroid hormone, secreted by ovaries with more specialized and fewer known functions than estrogen.[17] Levels of progesterone gradually decrease over the menopause transition before stabilizing at low levels after menopause. [18] [19]
Progesterone mainly functions in fertility and pregnancy. It is secreted by the corpus luteum body of the ovary, triggering changes in the uterus that make it ready to support an implanted fertilized egg. The human placenta also secretes progesterone in support of pregnancy. As well, progesterone is involved in regulating breast tissue growth and differentiation, along with estrogen.
Progesterone may reduce the stiffness of blood vessels, reduce water retention in the body, and modulate the sleep regulating hormone melatonin. [20] Consequently, the gradual loss of progesterone during menopausal transition may increase water retention and affect sleep quality.
During the late reproductive stage (Reproductive: Late Stage), follicle stimulating hormone (FSH), oscillates in sync with your other reproductive hormones. FSH triggers oocyte (egg cell) maturation and release and stimulates the secretion of estrogen from the ovary.
During the early menopausal transition (Reproductive: Early & Peak Stage) , FSH rises steeply to high levels. FSH levels plateau near the end of the menopausal transition and persists at this level post-menopause. [22][23][24] High levels of FSH, along with declining estrogen, may affect bone health and increase the likelihood of obesity. [25]
Blood glucose levels may become dysregulated and variable during menopausal transition, possibly due to irregular and declining estrogen and rising FSH. Brain glucose dysregulation may contribute to memory and concentration challenges seen during the menopause transition. [26]
MYTH
This myth is rooted in ageist and sexist attitudes. Most women in menopausal transition are healthy, happy and productive. Women cope with their symptoms like they cope with most other challenges in life – adequately at worst and successfully at best.
MYSTERY
Generally estrogen and progesterone levels decline and FHS (follicle-stimulating hormone) levels increase, all stabilizing at new levels following menopause. Changes in hormone levels are highly variable from woman to woman, and currently there is little data (and no easy way to collect data) about the individual woman’s reproductive hormone levels on a day-to-day, and month-to month, basis during menopausal transition. Other important hormones and neurotransmitter levels are not known either.[27]
MYSTERY
Since hormone levels can’t be accurately tracked day-to-day/ month-to-month for individual women, the impact of hormones on symptoms is speculative for most symptoms. Technological tracking of symptoms and biomarkers over time is lacking. The result is that current research can only correlate changing hormones with symptoms for averaged populations of women, and with only a rough idea of timing of these events.
MYSTERY
There aren’t solid answers but the ideas from anthropology, genetics and evolution give some interesting hypotheses. Here are two of them:
1 “Why do women outlive their fertility?”
Twenty-first century women (and people in general) are living 40- 50 years longer than women did before 1900. At that time, most women died around age 40 (across different cultures), before even reaching the menopausal transition. Living through the menopausal transition and beyond is relatively recent.
There may be no evolutionary “purpose”, or survival advantage, to either individual women or to their descendants. The length of the reproductive life span in human females is comparable to other great apes, however great apes die soon after their reproductive systems age and stop functioning. The hypothesis is that menopause might not be the key trait. Perhaps the ability to extend life post-menopause is the critical trait that needs more attention. [28]
2 “The Grandmother Hypothesis”
Overwhelmingly, women of past generations had children at a younger age than now, typically starting in their teens and early 20’s. After children are born to a young woman and her family, her genetic contribution to future generations is complete. Since childhood disease and trauma impact human mortality so strongly, children’s survival becomes evolutionarily paramount. When women have children that survive long enough to bear them grandchildren, the continuation of the woman’s genes becomes more probable. As well, grandmothers may improve the likelihood of her grandchildren’s survival by sharing her resources, help and knowledge, creating more insurance for the survival of her genes. This hypothesis is called “Kin Selection” and it proposes that there are strong natural selection factors supporting longer lifespans (for both women and men). [29][30]
Knowledge is power, and personal knowledge is even more powerful. Most women are frustrated during the menopause transition because they can’t get clear answers about what is happening in their own bodies. Some may be experiencing debilitating symptoms. Others may want to understand possible therapies and the implications of those therapies. Many women just need to be heard and reassured that what they are experiencing is normal, that they aren’t “crazy” or “dying”. They want to understand what symptoms are transient versus what ones are permanent.
The current medical system has not prioritized mid-life women’s health, but this is starting to change. This lack of abundant resources for women nearing or in their menopause transition is the driving force behind what we are doing at Herstasis.
Remember – it is possible to have a healthy menopause with personal perspective and a sense of control! And we’ll be with you every step of the way.
[1] Baker FC, de Zambotti M, Colrain IM, Bei B. Sleep problems during the menopausal transition: prevalence, impact, and management challenges. Nat Sci Sleep. 2018;10:73-95 https://doi.org/10.2147/NSS.S125807
[2] Soules MR, Sherman S, Parrott E, Rebar R, Santoro N, Utian W, Woods N. Stages of Reproductive Aging Workshop (STRAW). J Womens Health Gend Based Med. 2001 Nov;10(9):843-8. doi: 10.1089/152460901753285732. PMID: 11747678.
[3] Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, Sherman S, Sluss PM, de Villiers TJ; STRAW+10 Collaborative Group. Executive summary of the Stages of Reproductive Aging Workshop +10: addressing the unfinished agenda of staging reproductive aging. Climacteric. 2012 Apr;15(2):105-14. doi: 10.3109/13697137.2011.650656. Epub 2012 Feb 16. PMID: 22338612; PMCID: PMC3580996.
[4] Lacroix AE, Gondal H, Langaker MD. Physiology, Menarche. [Updated 2021 Mar 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470216/
[6] Randolph JF, Jr, Zheng H, Sowers MR, et al. Change in follicle-stimulating hormone and estradiol across the menopausal transition: effect of age at the final menstrual period. J Clin Endocrinol Metab. 2011;96:746–754.
[7] Randolph JF, Jr, Sowers M, Bondarenko IV, Harlow SD, Luborsky JL, Little RJ. Change in estradiol and follicle-stimulating hormone across the early menopausal transition: effects of ethnicity and age. J Clin Endocrinol Metab. 2004;89:1555–1561.
Original content, last updated May 8, 2022.
© 2024 Herstasis® Health Foundation